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Supplemental Information
Revealing the hidden networks of interaction in mobile animal groups al-
lows prediction of complex behavioral contagion

Appendix A: Experimental methods for spontaneous

fast-start experiments
Groups of 150 ± 4 juvenile golden shiners (Notemigonus
crysoleucas) were allowed to school freely in a 2.1× 1.2 m ex-
perimental tank, in 4.5 – 5 cm deep water. Measures were
taken to ensure the experimental arena was acoustically and
visually isolated from external stimuli. Two layers of sound
insulation were placed under the tank to provide acoustic iso-
lation, and the tank was enclosed in a tent made of feature-
less white sheets, within an environmental chamber, within
which no persons were present during filming. We chose to
work with this species because they display highly coordi-
nated schooling behavior [1, 2]. Juvenile fish approximately
5 cm in length were purchased from I. F. Anderson Farms
(http://www.andersonminnows.com), and kept in a climate
controlled laboratory space for two months before they were
used in experiments. There were approximately 1,000 fish in
total, housed in seven separate 20 gallon tanks, at a density of
approximately 150 fish per tank. The tank water was condi-
tioned, de-chlorinated, oxygenated, and filtered continuously.
Fifty percent of tank water was exchanged twice per week.
Nitrates, nitrites, pH, saline and ammonia levels were tested
weekly. The room temperature was controlled at 16 ◦C, with
12 hours of light and 12 hours of dark, using dawn-dusk sim-
ulating lights. The fish were filmed overhead at 30 frames per
second, using a Sony EX1, at a resolution of 1920× 1080 pix-
els. All fish were fed flake food three times per day, and were
filmed in the experimental tank 2–4 hours after feeding. The
138 spontaneous startle events were collected from 5 differ-
ent free swimming groups of 150 (± 4) fish, with each group
composed of the members of a randomly selected tank. Each
group was recorded for 53 minutes. The experimental proce-
dure is identical to that of Katz et al. [1], where more details
can be found. All experimental procedures were approved by
the Princeton University Institutional Animal Care and Use
Committee.

Stereotypy of startle response in golden shiners
Like many fish, golden shiners exhibit a startle escape response
to the presence of certain stimuli [3]. There are several types of
startle response and fast-start motion (e.g. C and S starts) ex-
hibited by fish, but for this work we focused on a simple char-
acterization of response given by the sudden acceleration of an
individual, deviating well outside the norm of normal swim-
ming behavior. Fast-starts are known to be induced through
vision or sound alone, or by multi-modal combinations of unex-
pected stimuli [4]. We identified 138 instances of spontaneous
startle events, in which a single individual within the group
performs an initiating fast-start in the absence of any known
cue. Such spontaneous startles were rare, occurring, per fish,
approximately every 3.3 hours. This rate will likely depend
on how secure the fish feel in the environmental arena. We
tracked a window of 60 frames (2 seconds) around the startle
event itself, where the tracking window was determined by the
length of time between initiator and last responder. These fish
are capable of very rapid accelerations, and sustain speeds of
about 50 cm/s (Figure S1B) for a short time after the onset of a
startle. We observe in our data, in both spontaneous and trig-

gered alarms, that the cascade propagates outwards at about
100 cm/s (Figure 1C, Figure S3A). Given that our schools, to
a rough approximation, measure 100 cm along the long axis
when occupying the polarized state, it would only take about 1
second for the alarm to reach every individual, were the alarm
sustained. Since the false alarms we study never propagate to
the entire school, 1.6 seconds is long enough to observe the
entire cascade.

In 71 spontaneous startle events, one or more individuals
are classified as responding to the initiator. We most often
observed cascade sizes of 1 or 2 individuals, with the alarm
only rarely spreading to a large fraction of the school (Fig-
ure 1B). We classified startles and responses using a speed
and turning rate threshold of two standard deviations above
the baseline swimming speed and turning rate (this baseline
varies from event to event). Initiators and first responders
have speeds and turning rates higher than the school baseline
(Wilcoxon rank sum test, initiators p < 0.00001; first respon-
ders p < 0.00001). The later responders tend to be slower,
however, making it necessary to compare to the school’s aver-
age swimming speed to identify those fish which are respond-
ing.

In many cases individuals have been found to be unable to
distinguish, from the behavior of conspecifics, the reason for
sudden behavioral change (i.e. whether a threat is present or
absent [5]). This is especially true for organisms like fish whose
startle behavior is relatively stereotyped [3]. Variability in the
magnitude of the initial startle is not predictive of resulting
cascade size, supporting the hypothesis that neighboring fish
process an observed startle event as a binary behavior, and
cannot distinguish between real alarms and false alarms, which
we test explicitly below. Qualities such as the maximum speed
(likelihood ratio test, χ2(df = 1, N = 138) = 2.04, p = 0.15),
maximum acceleration (likelihood ratio test, χ2(df = 1, N =
138) = 2.89, p = 0.09), maximum turning rate (likelihood ra-
tio test, χ2(df = 1, N = 138) = 1.61, p = 0.21), and maximum
turning acceleration (likelihood ratio test, χ2(df = 1, N =
138) = 2.67, p = 0.11) are not good predictors of the influence
of the initiator, where the magnitude quantities were fitted to
the cascade sizes using Poisson regression because the depen-
dent variable (cascade size) is a count variable. Response la-
tency of first responder increases with distance from initiator,
consistent with [6], Figure S1A. The difference between the
swimming speeds of startlers, responders, and non-responders
can be seen in Figure S1B. The change in speed over time char-
acteristic of a startle is shown in Figure S1C, where we plot
the mean normalized speed and standard error of all observed
initial startle events, relative to time of maximum speed. The
startles are characterized by a rapid acceleration followed by
a slow deceleration.

The spatial extent of the behavioral cascade was calculated
by measuring, for each frame, the largest distance between lo-
cations of all responses that occurred in that frame and the
location of the cascade initiation. We averaged over all be-
havioral cascades in the data, and plotted the mean ± the
standard error (Figure 1C). The speed of propagation was
calculated by measuring the difference in spatial extent per
frame, for each behavioral cascade in the data. Again, we
averaged over all cascade events and plotted the mean ± the
standard error (Figure 1D).
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Golden shiners have been found to swim in both ordered
and disordered states. Ordered states are characterized by
high polarization (all fish swimming in a common direction),
or high rotation (where fish are locally polarized, but are ro-
tating around a common center), while disordered swimming
is characterized by both low rotation and low polarization [2].
Groups of 150 fish only very rarely enter the disordered regime,
predominantly exhibiting polarized or rotating motion [2]. We
find that initiators occur non-randomly in the group structure.
For example, we find that initiators tend to be found closer
to the group boundary than non-responders (Wilcoxon rank
sum test, p < 0.0001 all group states), and in polarized states,
initiators are more likely to be found closer to the group front
than non-responding fish (Wilcoxon rank-sum test, p = .008,
polarized groups). However, locations of initiators don’t tend
to happen in more or less dense regions than non-responding
fish (initiators: Wilcoxon rank sum test, p = .09, all group
states). See Figure S4 for details. We found evidence that
cascades propagate slightly further in polarized groups than
in rotating groups, a weak, but statistically significant increas-
ing trend (R = 0.23, p = 0.02).

Response to induced fast-start behavior Considering the in-
herently stereotyped nature of fast-start behavior, and the lack
of sensitivity of responders to the magnitude of the initiating
startle (see above), we expect that spontaneous fast-starts are
responded to in the same way as induced fast-starts (i.e. those
that are triggered in direct response to an aversive stimulus).
To test directly this hypothesis, and to validate our approach,
it is necessary to compare social contagion resulting from spon-
taneous and triggered evasion maneuvers. However, to avoid
confounding asocial and social factors in the response, we must
employ a stimulus that triggers fast-start in focal individuals
but is not perceived by potential responders.

Initially we attempted to employ a laser mounted on a series
of servo motors positioned 2 meters above the tank. Custom-
designed software allowed us to aim quickly at any location
in the tank and then to turn on and off the laser, providing a
rapid and relatively localized ‘blink’ of light. While this ap-
proach was successful at inducing startles, and could be easily
controlled, we found that it was not a truly local stimulus
since light was scattered off both the water surface and the
base of the tank. Furthermore we could not exclude the pos-
sibility that the necessary motion of the laser mounting may
have been perceptible to the fish below.

Following this attempt we focused on developing a device
that could provide local tactile (mechanosensory) stimula-
tion to induce fast-start evasion behavior. We designed the
monofilament perturbative stimulus illustrated in Figure S2
that allows us to automatically raise a thin filament (made out
of polyethylene) across a channel of dimensions 122 cm × 30
cm within our experimental arena, using a HiTec HS-5965MG
high-speed programmable digital servo to control motion. Fol-
lowing computer-controlled initiation by an experimenter, the
filament was raised from the base of the tank to a height of 3
cm within the water body, before lowering to the base again,
with the full procedure taking less than 200ms. To remove
potential acoustic stimuli caused by this motion, the design
allowed the servo motors controlling the motion to be placed
outside the tank (Figure S2A) and teflon was applied to the ar-
eas where the filament was in contact with the tank structure
to minimize friction, and thus minimize sound production. A
hydrophone was placed in the tank allowing us to validate
quiet operation and generally effective sound insulation.

The striking of fish by the monofilament induced fast-starts,
whereas releasing the mechanism in close proximity to fish

without physical contact resulted in no response (Figure S3B),
thus demonstrating that perturbations were effectively local-
ized. We triggered startle responses in schools of 150 fish,
recording the motion of individuals at 150 frames per second,
using a Prosilica GX-1050 (with a 9mm F1.4 c-mount lens,
and resolution of 1024 × 768). The fish were allowed to ha-
bituate for one hour prior to triggering startles. Following
the habituation time, startles were triggered at each of the
three monofilament locations (see Figure S2B), over the next
three hours, with a minimum of five minutes between trigger-
ing events. In total, we collected 67 triggered startle events.
Shiners maintain a density of 0.02 fish/cm2 in the experimental
channel, matching what we observe in free swimming schools
(Figure S4).

The trajectories of all fish were obtained via automated
tracking (see Appendix B, below). The timescale of individ-
ual response to triggered fast-start evasion (Figure S3C, for
response to spontaneous and induced fast-startles) and the
speed of resulting waves of evasion (Figure S3A, for response
to spontaneous and induced fast-starts) were indistinguish-
able, providing evidence that our fish do not differentiate be-
tween spontaneous fast-starts and those triggered by exposure
to an aversive stimulus. We performed linear regressions on
the speed of propagation for both spontaneous and triggered
startle events, compared the regression coefficients (slope and
intercept) with t-tests, and found that the slopes and inter-
cepts for both types of startles do not differ, with p-values of
p = 0.97, p = 0.49, respectively.

Since the triggered startles were conducted at a frame rate
of 150 fps, compared to a frame rate of only 30fps for the
spontaneous startle data, we smoothed the triggered startles
using a 5-frame smoothing window, and plotted both speed
profiles in Figure S3C. Smoothing was necessary in order to
be able to compare the maximum fish swimming speeds be-
tween datasets.

Appendix B: Description of tracking software
Automated tracking of large groups of fish is a challenging
problem due to their non-rigid body structure, as well as
partial and total occlusions of individuals when viewed from
above, generated by fish swimming over and under one an-
other. Occlusions occur in our experiments approximately
twice a minute per individual for free-swimming groups of 150
fish, which is enough to be problematic for accurate track-
ing. The SchoolTracker computer vision software used in this
project (developed by HSW) was created to reliably solve this
problem. SchoolTracker is comprised of three modules: detec-
tion, tracking, and track linking. The detection module takes
video recorded from a high-resolution camera mounted above
the experimental arena (providing an overhead view of the
school) and identifies possible fish body positions and orienta-
tions. This step is made difficult by the presence of occlusions,
which is why most image segmentation methods fail. Instead,
the detection module looks for local features such as corners
and line segments, and systematically estimates first fish head
positions from the corners, then body position and orienta-
tions from the optimal assignment between line segments and
estimated head positions. It then determines the statistical
threshold values based on the distributions of head intensity
or fish image intensity difference and removes the detection
outliers based on this threshold.

Given a set of detections for each frame, the tracking module
identifies which detections from one frame to the next belong
to the same individual, forming a track for that individual
over time. The multiple object tracking algorithm we use is
able to track the complex motion of each fish, and resolve oc-

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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clusions (overlapping bodies) by matching against a library
of learned robust body images. The algorithm first estimates
the motion states of each individual via two types of adaptive
alpha-beta filters (a form of simplified Kalman filter [7], but
modified for tracking fish in this instance), and then associates
the predicted future states of the individuals with detections
in the next frame by minimizing the sum of association costs,
which in our implementation was defined by the difference of
head positions, body angle and corresponding learned body
images. This is formulated as a linear assignment problem,
and is solved by the data association algorithm that is similar
to what we proposed previously in [8]. It scales very well when
handling a large number of fish as it was designed to deal with
detection error, temporal disappearance due to short-term oc-
clusion or missed detections.

Due to some (rare) long-term occlusions (e.g. when two fish
completely overlap for many frames), the tracks constructed
by the tracking module may be broken into shorter segments.
Since the number of fish in the experimental arena is con-
stant throughout the experiment, the track linking module is
used to piece together track segments via combinatorial op-
timization, to construct coherent tracks that span the length
of the full video. Upon inspection, manual relinking is per-
formed to correct errors. By itself, the automated system re-
covers over 95% of tracks without misidentifications, and over
97% of tracks without missing frames, minimizing the amount
of post-tracking correction necessary (accuracy evaluated on
10 randomly selected, 120 frame video segments of 150 free-
swimming golden shiners recorded at 30 fps).

The SchoolTracker software provides a simple graphical user
interface to streamline the process of parameter tuning and
track verification/editing, so that the final results accurately
reflect the positions and orientations of each individual fish in
the school over the whole length of the video.

Appendix C: Description of vision software
Visual, acoustic, touch, and lateral line sensory modalities
may all contribute to fast-start behaviors. Due to the im-
portance of vision to schooling in Golden shiner fish [9] and
the relatively small contribution of the lateral line [10], we
(CRT) developed a method for approximating the planar field
of view of each individual in a group when individuals are
restricted to an effectively planar environment as in this ex-
periment (restricted depth). After tracking, the positions and
orientations of each individual were used as the first step in
estimating the posture of each individual’s body. Posture es-
timation is trivial when fish are non-overlapping: there is a
null-cline in the image Laplacian that traces the midline of
the fish’s body. Points along this null cline are sparsely sam-
pled using a kd-tree (k = 2) data structure, and linked using
a greedy energy minimizing line following method, where the
energy of a line is minimized by reducing the distance between
subsequent points, and minimizing the angle of curvature be-
tween adjacent line segments. Finally, a cubic basis spline is
fit to the selected points to approximate the midline curve,
while the flanks of the individual are estimated by searching
for boundary pixels (after thresholding to remove the back-
ground) perpendicular to the tangent of the curve, and fit-
ting a linear function to their distance relative to the curve
(similar to [11]; here we use the Thiel-Sen estimator for ro-
bustness). This gives an approximation of the body of each
individual summarized by the coefficients of the basis spline
and the slopes and intercepts of the left and right flanks.

Posture estimation is substantially complicated by the oc-
currence of partial occlusions. This is why skeletonizing after
thresholding out the background fails to work well for mid-

line estimation, as clumps of individuals yield highly irregular
skeletons. The method above is robust to this, but may still
fail when individuals cross while their bodies are curved. To
counter this, information about body posture estimation on
previous frames is used to predict the posture of an individual
in the future using a simple Kalman filter.

After the body posture for every individual in the school
has been characterized, an estimation of the location of each
eye, for each individual, is made using the current heading
of the fish, the position of the fish’s head, and the estimated
flanks. From the midpoint position of the head, the transition
points from body to background on either side of the individ-
ual (perpendicular to the heading) are determined. Estimates
are improved using a Kalman filter to smooth over brief occlu-
sions and possibly noisy detections. Line segments encoding
the shape of every body are stored in a simple spatial data
structure (in this case a 2d hash table) for fast look-up based
on spatial coordinates. For each eye of each individual, rays
are cast (at a resolution of π × 10−3 radians per ray) from
that position and the point of first intersection with other ge-
ometry in the frame is recorded (distance and identity). The
total number of rays from an eye intersecting each individual
in the scene is recorded as the angular area subtended by that
individual on the focal individual’s eye. The circular mean of
the rays intersecting the other body is recorded as that indi-
vidual’s angular position relative to the focal individual. An
example showing line of sight and the angular area occupied
by one focal individual in the field of view of each member of
a group is shown in Movie S1.

Appendix D: Features used in model selection
Preliminary analysis allowed us to eliminate the Voronoi
neighborhood as a predictive feature in our regression models.
The Voronoi tessellation of the group was determined by com-
puting the dual of the Delauney triangulation of individuals’
positions [12]. The Voronoi neighborhood alone is a good pre-
dictor of first responders, as it contains similar information to
other features such as metric and topological distance. How-
ever, when it is included in models with these other feature
variables, the Voronoi neighborhood loses significance (logistic
regression, likelihood ratio test, p = 0.15). This is reasonable,
as the Voronoi neighborhood is a binary variable, and doesn’t
contain as much information as metric distance or angular
area.

In our main model selection procedure, we included 12 fea-
ture variables, motivated by the literature [13, 14], and listed
in Table S1. The features each belong to one of two cate-
gories: absolute or comparative. Absolute features are those
that contain no implicit information about what other neigh-
bors are or are not doing. Examples of absolute features are
metric distance, relative position, relative heading, and sub-
tended angular area. Comparative features do contain im-
plicit information about other neighbors. Some examples of
comparative features are ordinal variables, such as topological
distance and ranked angular area, and relative features, like
relative metric distance (MDmin/MD(i)) and relative angular
area (A(i)/Amax).

Although there is some collinearity in the predictor vari-
ables, as is to be expected since some predictors such as met-
ric and topological distance are good proxies for each other,
the correlations are not strong enough to merit any predictor’s
exclusion from the model selection. We inspect the variance
inflation factors (VIF) between pairs of predictor variables.

Footline Author PNAS Issue Date Volume Issue Number 3
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V IF =
1

1−R2
(S1)

A good rule of thumb [15] is that VIFs less than about 10
are acceptable. Metric distance and topological distance are
the most collinear, with a VIF = 2.55, so we can justify in-
cluding all pairs of predictors without being overly redundant.

Log-transformed versions of features were also included as
sensory perception is often on a log-scale [16]. We included log-
transformed versions of features for which taking the log im-
proved the maximum likelihood of that individual feature pre-
dicting the data (Figure S5). Along with the log-transforms,
two more transformations were needed, in order to change rel-
ative angular position (θ), and loom (L) into forms that made
sense for a logistic regression model, such that a monotonic
relationship could be expected between the independent and
dependent variables. We transformed θ into cos(θ−φ), where
φ was the phase shift resulting in the optimal log-likelihood
for the feature (Figure S6A). Similarly, we selected |L| (ab-
solute value of loom) instead of L, because |L| had a higher
log-likelihood (Figure S6B). Neither of these features ended
up performing well in the model selection procedures.

Multi-model inference
For each feature subset, a generalized linear model (GLM)
with a logistic link function is fit to predict the probability
that a witness of the startle event would be likely to be the
first responder. We use a multi-model inference technique to
find the subset of the 12 features and their log-transforms used
in our analysis that best fit our data. The important features
are not simply the features used in the “best” model, as this
is likely subject to overfitting given that we are testing every
possible feature combination, and thus could vary depending
on the exact dataset used. Instead, the relative importance of
each feature, ωf , is estimated following [17] as

ωf = Z−1
∑
i

δfi exp(BICmin − BICi) (S2)

BICi = l(θ̂i)−
ki
2

log(N) +O(1) (S3)

≈ logP (s1|s0,Mi) (S4)

Where BIC is Schwartz’s Bayesian Information Criterion, Z

is a normalization constant, l(θ̂i) is the maximum likelihood
estimation for the parameters of model i, ki is the number of
features in model i, and δfi is an indicator function that is 1
if model i contains feature f , and zero otherwise. The BIC
of each model i is compared against the minimum BIC score
obtained by any model, BICmin, such that features found in
models close to BICmin are given more weight than features
in models significantly greater than BICmin. P (s1|s0,Mi) rep-
resents the probability of a fish being a first responder (s1),
given a startle by a neighbor fish (s0), using model Mi.

Results from model selection on the 12 untransformed candi-
date features and 7 log-transformed candidate features, when
ranked by feature weight, place log Euclidean distance, ranked
angular area, log ranked angular area, and log topological dis-
tance as the top four candidates for inclusion in any model (in
that order, Figure S7). However, one important consideration
is the extent to which different features exclude each other.
Although two features may have similar relative importance
scores, and thus seem to both be necessary for a good model,
the presence of both in the same model may be redundant

with one essentially excluding the other. This is the case for
log metric and log topological distances (Figure S8); one is
sufficient for inclusion in a model, and of the two log met-
ric distance has a higher relevance score (the relative feature
importance for metric distance is four times greater than for
topological distance, Figure S7). Similarly, log ranked angu-
lar area and ranked angular area mutually exclude each other.
The remaining features have relevance scores that are even
lower, more than ten times lower than the top feature, so we
exclude them from the final model. We calculate this joint
conditional importance as follows:

Cfg =

∑
i δ
f
i δ
g
i exp(BICmin − BICi)∑

i δ
f
i exp(BICmin − BICi)

(S5)

Taking this into account, as well as the relative ranking of
best models (Figure S7B), we find that a model that includes
ranked angular area and log metric distance is supported best
by the data.

We use this pairwise mapping of sensory input to behav-
ioral response to build the interaction networks. While the
majority of strong connections in these networks occur within
a small local neighborhood, there also exist many long range
weaker connections, connecting more distant parts of the net-
work (Figure S9). An example of the dynamic network is
shown in Movie S2.

L1-penalized logistic regression for feature selection
An alternative to the multi-model inference above is to fit a
logistic regression model with all variables present, but with
an L1 norm imposed on the regression problem to both pre-
vent overfitting and favor sparse models. We employ a logistic
function to model the probability that an individual will be
the first to respond to an initial startle, based on the ensemble
of features quantified about the initiator.

To enforce that only non-redundant features are used, θ
(the vector of coefficients weighting the variables present in
the logistic function modeling P (s1|s0), where s0 represents
the initiator of the startle event, and s1 is the first responder)
is chosen such that the maximum likelihood estimate of the
model is balanced against the L1 norm of θ, with the strength
of the penalty governed by λ. By varying λ, the tradeoff be-
tween model complexity (the number of features with non-zero
coefficients) and the predictive power of the model can be ex-
plored, with higher values of λ yielding less complex (fewer
non-zero coefficients) models of P (s1|s0). The goal is to find

max
θ

N∑
i=1

logP (s
(i)
1 |s

(i)
0 )− λ||θ||1 (S6)

where i indexes all the candidate initial startle/first responder
pairs in the data, and || · ||1 is the L1 norm.

Choosing a model based on λmin (the value of λ at which
the binomial deviance of the model is minimized) gives a set of
features with nonzero coefficients that represent the best bal-
ance between model performance and the number of features
used by the model. A suggested heuristic to be even more con-
servative about overfitting is to use the smallest λ1SE < λmin

that is within 1 standard error of λmin. Results from this L1

regularization are shown in Figure S10.

Interaction terms. To ensure that we are not missing an impor-
tant synergistic effect from feature pairs, we separately con-
sider models which include interaction terms from the top 4
performing features. Only the top individually performing
features were included because using all pairwise interaction
terms, let alone all interaction terms, from our full feature

4 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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set would be computationally prohibitive. For pairwise in-
teractions, the number of terms grows with the square of the
number of features, while for all possible interactions the num-
ber grows exponentially with the number of features. In an L1

regression, none of the interaction terms were selected as im-
portant (Figure S11), leading us to conclude that interaction
effects from pairs of features are not necessary in the model.

Appendix E: Group spatial measures
Local density. We draw a circle of radius R around the focal
fish, and count the number of neighboring fish falling in that
circle. We divide this number by the area of the circle that
falls within the group boundary, to get rid of unwanted edge
effects.

ρi =

∑N
j=1(dij < R)

Ci ∩Agroup
, (S7)

Where dij is the distance from fish i to fish j, R is the local
density radius, Ci is the circle of radius R around fish i, and
Agroup is the area of the group. To make sure the boundary
density is not being affected by having a tiny number of fish
fall within the local radius, R, we define this local radius as
the distance to the N th nearest neighbor, thereby ensuring
that at least N neighbors fall within R. An example of local
density is shown in a sample fish group in Figure S12A.

Distance from group boundary. We detected the group bound-
ary using an alpha-shape method. A boundary edge is drawn
between any two fish, Pi and Pj in the group where a disk of
radius 1/a can be placed such that it contains all points in the
group and Pi and Pj are on its boundary. We use the alpha
shapes implementation available on the Matlab file exchange
platform [18], with a radius of 25 cm. Once we have identified
the boundary individuals, we define a fish’s minimum distance
from the boundary as the minimum distance to any point on
a line connecting two consecutive boundary fish. Fish located
on the boundary have a minimum distance to the boundary of
zero. An example of distance from group boundary is shown
in a sample fish group in Figure S12B.

Distance front-back. We calculate the heading direction of the
group as the mean heading of all fish. We then measure the
distance front-back as the shortest distance from each fish’s
position to the line drawn through the group center of mass
along the group heading. A fish has a distance front-back of
0 if there are no other fish further behind the group center
of mass. Likewise, a fish has a distance front-back of 1 if no
other fish are further ahead of the group center of mass.

di = (r̄i − r̄COM) · |H̄| (S8)

Where H̄ is the mean group heading, ri is the fish position,
and rCOM is the group center of mass position. An exam-
ple of distance front-back is shown in a sample fish group in
Figure S12C.

Influential regions (as estimated by the local clustering coef-
ficient) tend to be found near the front and near the boundary
of groups (Fig. S12D, Fig. 3E,F main text).

Polarized/Rotational states. We calculate polarized and rota-
tional states following Tunström et al. [2]. The polarization
of the group is a value between 0 and 1, where 0 is completely
unpolarized, and 1 is completely polarized. The polarization
is the average of all individual headings (ui). A group is cat-
egorized as polarized if it has a value of P > .65 and R < .35,

and it is categorized as rotating if P < .35 and R > .65.

Pgroup =
1

N

√√√√ N∑
i=1

u2
xi + u2

yi (S9)

The amount of rotation around the group center of mass po-
sition is calculated as follows:

Rgroup =
1

N

∣∣∣∣∣
N∑
i=1

ui × ri

∣∣∣∣∣ (S10)

Where a group is completely rotational if R = 1.

Positioning of individuals within group. On a 10 minute video
for 20 verified correct tracks, we asked what is the typical dura-
tion of individual spatial fidelity within the group, with respect
to the group boundary. We find that the residency time of any
particular position in the group is relatively short (about 25
seconds) given the decay in the autocorrelation function for
distance from the boundary (Figure S13A,B), and all 20 in-
dividuals of the random subset selected spend time on both
the boundary and in the interior of the group, thus individual
motion in golden shiner schools is relatively fluid.

Appendix F: Spatial structure of the network
Although many global network measures that exist in the lit-
erature have been useful in characterization of these networks,
such as efficiency measures and centrality measures, we find
that such global metrics are not as applicable to complex con-
tagion processes as they are to simple contagion processes.
These global measures are also useful when information often
reaches the entire network, unlike in our data where informa-
tion spread is most often localized to a small portion of the
network, although it can spread extensively. Instead we fo-
cus our investigation on local network measures. We include
distributions of some of these local measures in Figure S14.

A simple measure of path redundancy is the local cluster-
ing coefficient, which compares the number of closed triangles
(where all three neighbors are connected) to the number of
total possible triangles (all pairs of neighbors with the focal
node). We use the weighted directed clustering coefficient from
[19] as a simple extension of the clustering coefficient concept
to weighted and directed graphs, which is defined as the fol-
lowing;

Ci =
1

2

∑
j

∑
k(wij + wji)(wij + wki)(wjk + wkj)

[dtoti (dtoti − 1)− 2d↔i ]
(S11)

dini =
∑
j 6=i

aji, douti =
∑
j 6=i

aij (S12)

dtoti = dini + douti (S13)

d↔i =
∑
j 6=i

ajiaij (S14)

Where wij is an entry in the weighted adjacency matrix, and
aij is an entry in the binary adjacency matrix. We found
that some characteristic network properties are spatially struc-
tured. Most notably, the local clustering coefficient tends to
be found in regions of local density, near the boundary. In
polarized groups, fish with high clustering coefficients tend to
be found near the front of the group (Figure S15, Figure 3,
main text).

Additionally, we find that there exist regions of local clus-
tering in the fish schools (Figure S16). We calculate the cor-
relation function for fluctuations in clustering coefficient as a

Footline Author PNAS Issue Date Volume Issue Number 5
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function of distance. The correlation length, which is the dis-
tance beyond which there tends to be no similarity between
pairs of clustering coefficients, averaged over all nodes in all
networks in our dataset is 32 cm.

ψ(r) =

∑
i,j δ(r < dij < r + ε)(CCi − |CC|) · (CCj − |CC|)∑

i,j δ(r < dij < r + ε)

(S15)

Where |CC| is the average value of local clustering coefficient
over all nodes in the network, so that we are measuring fluc-
tuations from the mean value, δ is an indicator function that
selects pairs of nodes i and j such that the distance between
them is between r and r+ ε. The denominator is just the nor-
malization by number of node pairs which are this distance r
apart.

Exterior visual field. Access to visual information outside the
group is important for obtaining direct visual information re-
garding predators. We evaluate this exterior visual field of
each fish by measuring the fraction of its field of view which
extends to the tank boundaries without intersecting with a
neighboring fish. As expected, we find that the fraction of the
field of view extending outside the group is much higher for fish
located on the group boundary, as well as those near the group
front and group rear (Figure 3E,F main text, Figure S17).

Fitting local clustering coefficient model of cascade size
We determine how well the local clustering coefficient of the
initiator describes the resulting cascade size by fitting a gen-
eralized linear model with log link function (Poisson regres-
sion because our dependent variable is a count variable), to
the data using the local weighted clustering coefficient of the
initiator as a predictor variable. We find that this model
is highly significant (likelihood ratio test, χ2 = 78.1, (df =
1, N = 138), p < 0.00001). To test whether this effect is truly
due to the network structure, or results from other correlated
quantities, such as local density, out-degree, and distance from
group boundary, we estimate the relative contribution of each
feature in two ways (Figure S18). First we evaluate the rel-
ative importance of each feature using L1 regularization. We
find that, at the point of minimum deviance and minimum
deviance plus 1/2 standard error, the local clustering coeffi-
cient has the highest relative weight. Second, we evaluate each
variable’s unique contribution to the explained variance of the
cascade size distribution [20]. The local clustering coefficient
has the highest unique contribution to the 69% of variance
explained by the total model. The sum of the values in Fig-
ure S18B is smaller than 69% due to correlations among the
variables. The strong performance of clustering coefficient in
these models suggests that the interconnectedness of a node’s
neighbors is essential to understanding the way in which alarm
cascades flow through a group.

Along with fitting models to the cascade size data, we also
plot the mean and standard error of cascade size as a function
of clustering coefficient. We assign the data to logarithmically
spaced bins, of sizes such that all but the very smallest contain
four or more data points, and calculate the mean and stan-
dard error of the cascade sizes in each bin. We find that most
of the mean values fall within the 95% confidence interval for
the generalized linear model fit (blue shaded region, Fig. 3C,
main text).

Alternative versions of weighted, directed local clustering co-
efficient. The generalization from the binary undirected clus-
tering coefficient to weighted directed clustering coefficient
(WDCC) is not entirely obvious. We use the most widely

accepted definition [19] for the majority of the analysis. How-
ever, one drawback to this version is that it does not distin-
guish between in-connections and out-connections, but rather
sums the in-strength and out-strength. For the purposes of
considering influential and susceptible individuals this may
not be the best version to use. Only the out-connections of
a focal node, and not the in-connections will have bearing on
that node’s influence. Likewise, only the in-connections will
be relevant to a node’s susceptibility. For this reason we pro-
pose two slightly modified versions of the weighted clustering
coefficient, defined as follows.

Couti =
1

2

∑
j

∑
k

(wji)(wki)(wjk + wkj)/[d
tot
i (dtoti − 1)− 2d↔i ]

(S16)

Where Couti is equivalent to (10), except for removing the in-
connections from the focal node.

Cini =
1

2

∑
j

∑
k

(wij)(wik)(wjk + wkj)/[d
tot
i (dtoti − 1)− 2d↔i ]

(S17)

Where Cini is also equivalent to (10), now removing the out-
connections from the focal node and only keeping the in-
connections. Using the modified Cout results in a slightly bet-
ter model when fit to the cascade size data (likelihood ratio
test, χ2 = 94.7, (df = 1, N = 138), p ≤ 0.00001, compared to
χ2 = 78.1, (df = 1, N = 138), p ≤ 0.00001 for the unmodified
WDCC), as well as a slight improvement when we look at re-
sponder susceptibility (see the following section), (likelihood
ratio test, χ2 = 57.8, (df = 1, N = 5502), p ≤ 0.00001, com-
pared to χ2 = 57.7, (df = 1, N = 5502), p ≤ 0.00001). The dif-
ference between in-connections and out-connections tends to
be relatively small compared to the weight of the connections
themselves, which is why the effect of using these clustering
coefficient variations is not tremendous.

Alternative network measures. We compare the local cluster-
ing coefficient to network measures that have been used in
different contexts to identify influential nodes [21, 22, 23]. A
summary of the results is included in Table S2. In unweighted
networks, the k-core is the set of nodes which have at least
k-connections [24]. A node’s k-core number is the largest k-
core to which it belongs. As a definitive weighted version
of the k-core hasn’t yet been established, we approximate a
weighted k-core by averaging k-core numbers of each node in
unweighted networks created by binarizing the weighted net-
work at different threshold values. We also normalize the k-
core numbers such that they fall between 0 and 1, to account
for networks that have been binarized using higher thresholds
having a smaller number of connections, and thus a smaller
number of cores. The unweighted k-core number of initiator
nodes is negatively correlated with resulting cascade size. This
is likely due to the fact that central nodes tend to have higher
k-core numbers, and these central nodes experience more re-
action inhibition, as a result of having more neighbors. The
model using weighted k-core number of initiator nodes is not
significant, (GLM fit, likelihood ratio test, p = 0.179).

We also consider the weighted betweenness centrality of the
initiator nodes as predictors of cascade size, given by:

g(i) =
∑
s 6=i6=t

σst(i)

σst
(S18)

Where σst is the number of shortest paths passing from node
s to node t, and σst(i) is the subset of those paths which also

6 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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pass through node i. Nodes with high betweenness centrality
are less likely to be influential. This gives more support to the
hypothesis that cascades in our system spread through frac-
tional contagion. Nodes with high betweenness centrality are
located in the center part of the group, where they are more
inhibited from responding due to having a larger number of
neighbors.

The edge weight variation is calculated as the variance in
edge connections per node, as a measure of how homogeneous
or heterogeneous a certain node’s connections are. This mea-
sure is also a negative predictor of cascade size, but the signif-
icance is most likely explained by spatial effects (central nodes
tend to have more edge-weight variation).

Susceptibility
We find that the same network properties that determine an
individual’s influence also determine its susceptibility, where
we define susceptibility as an individual’s likelihood of re-
sponding to an observed startle event. This concept of suscep-
tibility results from looking at responses from an individual’s
perspective, while influence results from looking at responses
from an initiator’s perspective. An individual will be more
likely to respond (is more susceptible) if it is strongly con-
nected to the initiator (short path length), and if it has neigh-
bors which are strongly connected to each other (high clus-
tering coefficient). The mechanism by which shortest paths
are important is simple to understand: shortest paths repre-
sent most probable paths. In fact, in our data we find that,
even when controlling for Euclidean distance, the shortest
path length retains significant power for predicting respon-
ders (logistic regression, (df = 2, N = 5502), p < 0.00001). We
also find that a node is more susceptible if it is in a highly
clustered region, that is, if it is in a region with strong inter-
connections between neighbors. A node that is a member of a
highly clustered region can take advantage of observing multi-
ple responders. In a simple contagion process, these multiple
ties would be redundant, but in complex contagion, they are
helpful in instigating a response. Here we define susceptibility
as the likelihood of a fish responding given that it observes the
initiator.

We measure the likelihood of late responders (all respon-
ders after the first responder) as a function of clustering coef-
ficient (controlling for in-degree, local density, distance from
boundary, and edge-weight connecting observing fish to star-
tled fish), and find that nodes with a higher WDCC are
more likely to respond to an observed startle event than those
with a lower WDCC (logistic regression, (df = 5, N = 5502),
p < 0.00001). We consider only subsequent responders (after
the first) because these are the fish that have the chance to
benefit from being in a highly clustered region by observing
multiple responders. When we repeat the same analysis for
just the first responder, we find that the clustering coefficient
(interconnectedness of its neighbors) is not important (logistic
regression, (df = 5, N = 5502), p = 0.50). This is because the
first responder does not experience multiple exposures, and
thus cannot be affected by a clustered neighborhood, thus we
only expect to see the complex propagation effect in individ-
uals responding after the first responder. Both perspectives
(influence and susceptibility to influence) support the main
point; that redundant paths amplify information, by asking
on the one hand, “given the local neighborhood of an initia-
tor, how many fish are likely to respond?”, and on the other
hand, “given the local neighborhood of any potential respon-
der, how likely is a response from that fish?”.

We use k-fold cross-validation to prevent overfitting when
evaluating influence and susceptibility effects. This was done
by partitioning the data into k = 10 subsets, training a model
on k − 1 subsets, and testing it on the remaining subset left
out of the training sample. This procedure is repeated k times
in total, withholding a different test subset each time. We plot
the values predicted from the training model on the test data
and compare with observed data (Figure S19). The range of
predicted values falls within the 95% confidence interval for
the best-fit model using all the data. This gives us confidence
that we are not overfitting to the current dataset, and that we
will observe the effect in a new set of data.

Appendix G: Simple, numeric, and fractional models
We simulated complex and simple propagation on our esti-
mated fish interaction networks, using both numeric thresh-
olds and fractional thresholds. Activation using numeric
thresholds requires an absolute number of neighbor activa-
tions, while activation using fractional thresholds requires that
a fraction of neighbors become activated. Because our data
only contain cascades initiated by a single fish, we only con-
sider cascade simulations seeded by one node. We activate
a seed node i at time t0. In the following time-step each
neighbor, j, of i has a chance of observing i as active, with
probability wij , which is the strength of the link between the
two nodes. Node j itself becomes active when the number
or fraction of observed active nodes exceeds a threshold, for
numeric and fractional contagions, respectively. To compen-
sate for the increased barrier to activation with an increasing
threshold, we include an amplification parameter C, which
represents the number of chances each node has to observe
a neighbor’s activation in each time-step t (alternatively the
number of coin-flips weighted by wij , where at least one posi-
tive result is needed to connect nodes i and j). The simulation
continues until no more activations occur. Seeding the cascade
with only a single node presents a problem for homogeneous-
threshold based contagions, however, because any threshold
greater than 1 requires that more than one fish begin in the
active state. Consequently, we assign thresholds randomly on
nodes in the graph, selected uniformly (although our results
do not depend on this form of distribution, as we will show
in the following section) from integers [1, φnmax]. For exam-
ple, for an average threshold of 3, there will be equal numbers
of nodes with thresholds 1, 2, 3, 4, or 5. Some nodes with
threshold 1 are necessary to allow the cascade to propagate
beyond the seed node. Similarly for fractional thresholds, we
distribute thresholds uniformly from (0, φfmax] on the graph.

The simulation proceeds as follows, continuing over t time-
steps, until no more activations occur. Only one activation
(Ai changes state from 0 to 1) is allowed per node, per simu-
lation, and any node that becomes active during the course of
the simulation remains active for the remainder.

Ai(t) = 1 if

{
Ai(t− 1) = 1∑N
j=1 δi,j > φi

(S19)

δi,j = (wijAj(t− 1) > min(Uj)) (S20)

Where Uj is a vector of Cf or Cn uniform random numbers, N
is the total number of fish in the school, and φi is a threshold
defined by the type of contagion used in the model.

φi,simple = 1, φi,numeric = ni, φi,fraction = ni
∑
j

Mij

(S21)

Footline Author PNAS Issue Date Volume Issue Number 7
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Where ni is the particular activation threshold of node i, Mij

is the binary adjacency matrix, and
∑
jMij is the number of

neighbors of node i.
We estimate the prior distributions of parameters as fol-

lows. Clearly, φsimple = 1, because simple contagions only
require one connection to propagate. The average node in our
graph has 30 visible neighbors, so we allow φnmax to be drawn
from the uniform distribution [1,30]. φfmax is drawn from
the uniform distribution (0,1], so that on average the num-
ber of neighbors required for activation at the highest value
of φfmax equals the number required for the highest value of
φnmax. The coin-flip parameter, C, is intended to compensate
for impedance to propagation due to higher thresholds. Pre-
liminary analysis reveals that across all values of φnmax and
φfmax, the optimal value for Cn is twice the value of φnmax,
and Cf is twice the value of φfmax × 30. So we set Cn to be
2 × φnmax, and Cf to 2 × φnmax × 30 for the remainder of
our analysis (Figure S20).

To evaluate the performance of the three contagion models–
simple, numeric, or fractional–on our derived interaction net-
works, we seed the propagation simulation with the initiator
nodes (individuals) observed from the cascade data, and eval-
uate the results using two scoring metrics. First, we find the
model that best predicts the identities of the responder nodes.
We calculate the maximum likelihood over a random selection
of parameter values, drawn from the prior distributions, aver-
aged over 10 parameter sets of 500 parameters each. For each
set of parameters for each node we averaged 50 iterations of the
simulation to remove any effect from the random distribution
of thresholds on the graph. We compare our three candidate
model performances on our fish network to the performances
on randomized versions of the network. The randomization is
achieved by swapping the identities of responder nodes with
the same number of randomly selected nodes in the group.
The randomized models provide a baseline for comparing the
simple, numeric, and fractional contagion models, and all three
candidate models at a minimum clearly better predict respon-
der identity than the baseline (Figure S21A).

Next, we consider an alternative scoring metric, where a
model is evaluated by how accurately it predicts the resulting
cascade length. The best fit model for predicting the identi-
ties of the responders is also the best fit model for predicting
the size of the cascade (Figure S22). The best fit threshold
for the fractional complex model is approximately φf = 0.25,
with agreement between both scoring metrics. Best fit values
for both scoring metrics are included in Table S3. While the
numeric and fractional models perform similarly using the first
scoring metric, the numeric model is much worse at predicting
cascade size, with a negative correlation persisting for most of
the threshold range. In the fractional model, however, we see a
strong positive correlation between predicted cascade size and
experimentally observed cascade size. This is likely due to the
difference in the two contagion types near the group boundary.
The numeric threshold will predict smaller cascades from the
boundary than from the bulk, due to boundary nodes hav-
ing fewer neighbors. In fractional contagion, cascades from
the boundary will be larger relative to the bulk, for the same
reason (boundary nodes have fewer neighbors).

We purposefully chose to use basic models to allow us
general insights into complex and simple propagation events
evolving on our networks, and to determine if there exists sup-
port for one contagion mechanism over another. Further work
is needed to fully understand the interplay between the struc-
ture of the network and the type of contagion mechanism by
simulating cascades on specific types of networks.

We also calculate the marginal likelihood, which is the inte-
gration of the likelihoods over the prior distribution of φ, and
find qualitatively the same results. The marginal likelihood is
calculated because a reasonable model should not depend on
fine-tuning of parameters (Figure S21B) [25].

In order to determine which of the considered models best
supports the finding that the final cascade size increases with
the local clustering coefficient of the initiator, we simulate
the fractional, numeric and simple threshold models initiated
from randomly selected nodes throughout the network, using
the best-fit parameters for φ and C (Figure 3D, main text).
When controlling for out-degree and local density (these are
both correlated with clustering coefficient, and can affect the
final cascade size), we find that simulated cascade size cor-
relates strongly with local clustering coefficient only in the
fractional threshold model. In the numeric model, cascade
size is slightly correlated positively with clustering coefficient,
but not as strongly as in the fractional model. In the sim-
ple model, cascade size is essentially independent of clustering
coefficient, when controlling for out-degree and local density.
These results are robust to the choice of response threshold
distribution (Figure S23A,B), as we describe in the next sec-
tion.

Alternative response threshold distributions We consider al-
ternative threshold distributions in this section, since we do
not know the form of variation arising from sensory noise, or
from individual variability in sensitivity to visual cues, for ex-
ample. We explore the effects on simulated cascade size when
we relax the constraint of a uniform distribution of response
thresholds in the group, to see if the effects we observe are
consistent with a wider range of threshold distributions. We
now set the response thresholds of each individual by drawing
from a Gaussian distribution with mean φn,f and standard
deviation σn,f , while restricting the distribution of thresholds
to be greater than zero.

We repeat the analysis described above, this time using a
Gaussian distribution for response thresholds, to find values
for φn,f and σn,f which best predict responder identities and
experimental cascade size. In Figure S24, we plot model per-
formance as heatmaps with the variation in response threshold
on the x-axis, and the mean response threshold on the y-axis
(this is a 2-dimensional version of Figure S22). We find that,
for fractional contagion, models that best predict both cas-
cade size and responder identities have low values of mean and
standard deviation (Figure S24A,B). For numeric contagion,
models that best predict responder identities also have low val-
ues of mean and standard deviation (Figure S24C), however
numeric contagion is a poor predictor of cascade size, as for
much of parameter space simulated cascade size is negatively
correlated with experimental cascade size (Figure S24D), for
spatial reasons we described in the preceding section (see Fig-
ure S22D). We also find that the maximum likelihood is great-
est for fractional contagion models irrespective of the type of
distribution (Figure S25A and Figure S21 for normal and uni-
form distributions, respectively).

Next, we chose parameters from the optimal region of phase
space, for the three types of contagion (φf = 0.05, σf = 0.06;
φn = 1.5 σn = 1; φs = 1, σs = 0), and simulated cascades ini-
tiated by every node, in 20 randomly selected networks. We
confirm our results from Fig. 3D (main text); that cascade
size varies most strongly with clustering coefficient when us-
ing fractional contagion, as compared with numeric or simple
contagion (Figure S25 B). Note that the mean value of the
cascade size for numeric contagion here is higher than in Fig-
ure 3D, main text. This is because the parameters that best

8 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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fit the data for the Gaussian distribution result in a slightly
higher average cascade size, for numeric contagion.

Finally, we performed a sensitivity analysis to the width of
the Gaussian distribution, by selecting a mean threshold value
and varying the standard deviation of the distribution from
which individual thresholds are chosen. We selected mean
values for the distributions to be small enough to allow re-
sponses to propagate, even for small values of σ, as well as
resulting in consistent values between fractional and numeric
contagion. Since the average fish in the group has 30 visible
neighbors, having a mean numeric threshold (φn) of 3 corre-
sponds to a mean fractional threshold (φf ) of 0.1. From 10

randomly selected networks in our data we simulated a cascade
initiated from every node in the network, and calculated the
resulting cascade size as the average from five trials, where
each node’s threshold is drawn independently in each trial.
For both fractional and numeric contagion as σ increases the
average cascade size increases, because larger values of σ allow
for more individuals with lower thresholds, facilitating propa-
gation. We find that simulated cascade size scales much more
strongly with fractional contagion than with numeric conta-
gion, invariant to the width of the distribution from which
response thresholds are drawn (Figure S23A,B).
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Absolute features

Metric distance (𝑀𝐷, 
log(𝑀𝐷))

Euclidean distance from focal fish to neighboring 
fish

Speed (𝑆) 𝑑(𝑀𝐷)/𝑑𝑡

Angular position (𝜃) Relative angular position of neighboring fish from 
direction of heading of focal fish

Angular speed (𝑑𝜃) 𝑑𝜃/𝑑𝑡

Angular area (𝐴𝐴, log(𝐴𝐴)) Angular area subtended on the retina of the focal 
fish by neighboring fish

Loom (𝐿, log(𝐿)) 𝑑𝐴𝐴/𝑑𝑡

Heading (𝐻) Difference between heading of focal fish and 
heading of neighboring fish

Heading change (𝑑𝐻) 𝑑𝐻/𝑑𝑡

Comparative features

Topological distance 
(𝑇𝐷, log(𝑇𝐷))

Ranked Euclidean distance from focal fish to 
neighbor fish

Relative metric distance 
(𝑟𝑒𝑙𝑀𝐷, log(𝑟𝑒𝑙𝑀𝐷))

Euclidean distance to from focal fish to nearest 
neighbor divided by Euclidean distance to neighbor 
fish.

Ranked angular area 
(𝐴𝑅, log(𝐴𝑅))

Rank of neighbor sorted by size of subtended 
angular area on retina of focal fish

Relative angular area 
(𝑟𝑒𝑙𝐴, log(𝑟𝑒𝑙𝐴))

Angular area of neighbor fish on retina of focal fish 
divided by maximum angular area observed by focal 
fish

Table S1. Description of all features used in model selection.
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Network feature Coefficient �� p value

LocalWweightedWclustering
coefficient

0.37 78.1 <0.0001

K-core -0.11 9.05 0.0026

Weighted K-core 0.05 1.81 0.179

Weighted betweenness -0.35 52.4 <0.0001

EdgeWweightWvariation 0.14 15.4 0.0008

Table S2. Comparison of model performance using alternative network measures.
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Complex fractional model

Parameter Mean SE

φfmax ; identities 0.2314 0.0172

φfmax ; cascade size 0.2438 0.0270

Complex numeric model

Parameter Mean SE

φnmax ; identities 8.900 0.3797

φnmax ; cascade size 24.57 0.5102

Table S3. Optimal parameter values for both evaluation metrics and both contagion types. Optimal parameter values do
not coincide exactly with marginal likelihood parameter values. The optimal values were obtained by finding the location of
the maximum log-likelihood in each of the 10 simulation runs, while the marginal likelihood values in Figure S22 are obtained
by averaging every log-likelihood value from each value of φmax on the x-axis. The marginal likelihood parameters are best
on average, while the optimal parameter values are best overall. The difference between them is accounted for by there being
more spread in the data near the optimal parameter values.
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Fig. S1. (A) The latency between the initial startle and first response grows with distance between the initiator and first
responder. (B) The distribution of speeds of initiators (blue), first responders (red), and non-responders (yellow). Data are
shown in bars, while the kernel-smoothed distribution is overlaid in dotted lines. Initiator and first responder speeds are
significantly higher than non-responder speeds. (C) Average shape of speed-profile for startle response (centered on zero and
standardized so that max speed is one, and occurs at t = 0. Curve is created by averaging over all initiators, with error bars
showing the standard error).
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Fig. S2. Experimental setup for triggered startles (A) The monofilament is raised by a servo, pictured from above
in top view, which is fixed outside the light tent. Here we used a HiTec HS-5965MG high-speed programmable digital servo,
with a 10cm arm. The monofilament then runs through the white support structure, through the a white teflon return donut,
through the channel wall, and then through the same structures in reverse order on the other side—shown in side cut-away.
The white teflon donut is attached to another filament and an elastic. When the servo is triggered the wire raises, stretching
the elastics, which in turn pull the monofilament back to the channel floor when the servo relaxes. (B) All channel experiments
were conducted in the above experimental tank. The fish were constrained a region of the 213cm × 122cm tank consisting of two
43cm × 43cm gravel-bottomed shelters and a 122cm × 30cm channel connecting the shelters. Through trial and error we found
that 30cm was the widest we could make the channel while discouraging the school from entering a torus or milling state. The
channel had clear internal walls with clear monofilaments running along the bottom of the tank at three different positions—
designated here by dashed blue lines. These monofilaments could be quickly raised and lowered to strike the underside of
passing fish. The light tent which can be seen hanging around the boarder of the tank, provides both even illumination and
separation between the fish and the experimenter. Unseen, there are two layers of sound insulation below the tank to prevent
disturbances, such as closing doors and flushing toilets from disturbing the fish.
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Fig. S3. Triggered behavioral cascades (A) Average speed of cascade wave propagation, calculated as the change in
the spatial extent of the cascade per second, averaged over all triggered cascade events. Compare to blue curve, for speed of
spontaneous behavioral cascade. (B) Comparison of response speeds of successful trials (red) to control trials (black). Speed
profiles of fastest fish in school following alarm triggering are averaged over all events, and plotted for both successful and
control trials. No significant increase in speed is observed for control trials, and speed in successful trials was significantly
higher than in control trials (Wilcoxon rank-sum test, p < 0.00001). (C) Average speed profile for triggered startle response
(centered on zero so that the max speed is one, and occurs at t = 0. Curve is created by averaging over all initiators. Compare
to blue curve, for spontaneous startles. Data points in (A), (B), and (C) show the mean, with error bars for ± the standard
error.
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Fig. S4. Distributions of initiator, first responder, and non-responder positions in relation to (A) distance from group
boundary, (B) local density, and (C) distance front-back (in polarized schools).
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Fig. S5. Comparison of log-transformed features to un-transformed features. Some features have improved individual per-
formance when using the log-transformed version. We use both log-transformed and un-transformed features in our model
selection procedures. We include the log-transformed version of a feature if it has significant predictive power on its own, and
if using the log-transform results in an improvement in individual feature performance.
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Fig. S6. Transforms of feature variables, fitted to first responder data. (A) Cosine-transformed and shifted relative angular
position. The best shifted value for angular position is approximately π/2. (B) Comparison of un-transformed loom to absolute
value of loom. The absolute value of loom out-performs the un-transformed loom.
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Fig. S7. Results from multi-model inference. (A) Relative importance of every feature used in model selection. (B) Relative
evidence weight for top the 15 models.
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Fig. S8. Feature pair conditional probabilities. This plot represents the likelihood, weighted by the relative evidence weight
of the model, that the column variable appears in a model given that the row variable is in the model. Some variables exclude
each other, meaning that they are not frequently found in the same highly weighted models, even though they may show up
separately in highly weighted models. This would be expected for variables that contain redundant information. Topological
distance and metric distance exclude each other here, meaning that they contain similar information, and only one should be
included in the final model.
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Fig. S9. Sensory network edge weight (wij) as a function of topological distance (TD) between i and j, showing a lattice-like
emphasis on spatially near-neighbors, but with many weak, long-range (topologically far) connections. (A) shows a histogram
of the (normalized) frequency that an edge connecting i to j is greater than a threshold τ (see legend), as a function of the
topological distance between i and j. High probability edges (black) are highly concentrated at low topological distances,
while a large number of low probability edges (blue) can still be found at much larger distances. In (B), the (log-transformed)
edge weights are plotted as a function of topological distance (plus a small amount of Gaussian noise to prevent points from
otherwise obscuring each other at each discrete interval) to show the full distribution of points summarized in (A). Data in
both panels are from 10 networks subsampled uniformly at random from the set of all networks (one per trial).
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Fig. S10. Results from L1 regularization. (A) Feature weights for the value of λ with minimum binomial deviance (λmin),
and (B) feature weights for λ > λmin at 1/2 standard error greater than the binomial deviance for λmin. The top two selected
features are in agreement with the results of the multi-model inference method.
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Fig. S11. L1 regularization for interaction terms from top four features selected from multi-model inference. None of the
interaction terms have nonzero feature weights. (A) Feature weights for the value of λ with minimum binomial deviance (λmin),
and (B) feature weights for λ > λmin at 1/2 standard error greater than the binomial deviance for λmin.
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Fig. S12. Illustration of spatial measures for four sample groups. (A) local density, (B) distance from group boundary, (C)
distance from the group front, and (D) social influence (as estimated by the local clustering coefficient).

24 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author



i
i

“PNAS˙SI˙RD16” — 2015/3/3 — 13:44 — page 25 — #25 i
i

i
i

i
i

t = 25 s

N = 20

A B

t = 24 s

Fig. S13. Lin-log plot of distance from boundary (A) autocorrelation function (ACF) for 20 individuals in a group of 150, with
random reshuffled ACF baseline (dashed line). Red vertical line marks the decay time (minimum lag in autocorrelation function
needed to reach a correlation indistinguishable from noise). In (B), a density plot shows the decay time for 20 individuals, with
the median decay time shown in red.
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Fig. S14. Descriptive network statistics. (A) Frequency of in-degree; inset: in-degree and out-degree are correlated, but not
perfectly so. (B) Frequency of number of neighbors (based on a binary threshold of AA > 0.02 radians). (C) Cumulative
distribution function of the difference between incoming and outgoing edge weights. Although many edge weights have similar
in and out values, there are enough differences that symmetrizing the network and treating edges as undirected is not justified
in general.
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Fig. S15. Spatial structure of local density and social influence. (A)Local density is not strongly correlated with distance
from boundary, but (B) density does tend to be higher near the group front. (C) social influence (approximated by local
clustering coefficient) varies positively with local density.
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Fig. S16. Correlation function between clustering coefficients of pairs of nodes, as a function of the distance between them.
Nodes which are close together tend to have more similar values of local clustering coefficients than nodes which are far apart.
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Fig. S17. Visualization of external field of view; rays (white lines) unobstructed by other fish are drawn from eye positions
to corresponding positions on the tank wall. Fish on the group boundary can see much more outside the group than those in
the group interior.
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Fig. S18. Relative contribution of each variable to the model’s fit to the cascade size distribution. (A) relative feature weight
from L1 regularization. (B) Each variable’s unique contribution to total variance explained by the model. The local clustering
coefficient has the highest contribution to the model in both cases.
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Fig. S19. Cross validating the model. The data was repeatedly divided into 10 subsets, trained on 9 of them, and tested
on the remaining one (plotted in black diamonds). 95% confidence interval from model fits are shown in the blue shaded
areas. (A) Cross-validation for the relationship between cascade size and local clustering coefficient. (B) Cross-validation for
relationship between susceptibility to influence and local clustering coefficient. Histograms show the frequencies of positive
responses (above) and no responses (below) as functions of clustering coefficient.
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Fig. S20. Log likelihood for (A) numeric and (B) fractional models are maximized at a ratio t/C of 0.5, and 0.5/30,
respectively.
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Fig. S21. (A) Results from the simple, complex numeric, and complex fractional contagion model fits. The models are
evaluated by how well they predict the identities of the responded individuals, seeded by the initiators from the data. We show
the mean values of the maximum likelihoods, averaged over 10 iterations of 500 sample parameter values. Simple random and
fractional random are the results from randomized versions of the data, and represent the baseline maximum log-likelihood.
Both complex contagion models (numeric and fractional) fit our data better than the simple contagion model. (B) Marginal
likelihoods for candidate models (alternative to maximum likelihood (A)). Error bars indicate standard error (note that some
are smaller than the marker size). Marginal likelihoods were calculated by averaging the log-likelihoods from 10 trials using
500 parameters in each trial, fit to the responder identity data.
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Fig. S22. Optimal threshold values (φ), organized by row for complex fractional (A, B) and complex numeric (C, D) contagion
models, and by column for identity (A, C) and cascade size (B, D) model scoring metrics.
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Fig. S23. Simulated cascade size plotted against clustering coefficient of initiator, for (A) fractional contagion, (B) numeric contagion. Four different levels of standard

deviation in threshold response distributions are tested, while the mean threshold response is held constant. Solid lines represent best fit of cascade size to clustering coefficient,

after controlling for node out-degree and local density, while shaded regions represent the 95% confidence interval around the line of best fit. Cascade size varies more strongly

with clustering coefficient when using fractional contagion (A) than when using numeric contagion (B).
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Fig. S24. Gaussian threshold distribution: best fit parameters. Heatmaps show the average log-likelihood value at each value
of φ and σ (5000 total parameter values). This figure is a 2-dimensional version of Figure S22. (A) Fractional contagion,
model predicting responder identities. (B) Fractional contagion, model predicting cascade size. (C) Numeric contagion, model
predicting responder identities. (D) Numeric contagion, model predicting cascade size. Simulated cascade size is negatively
correlated with experimental cascade size, for numeric contagion, which explains why there is no clear optimal parameter region
here.
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Fig. S25. Gaussian threshold distribution results (A) Maximum log-likelihood for models predicting responder identities in
experimental cascades. Mean values of the maximum likelihoods are shown, with standard errors averaged over 10 iterations
of 500 sample parameter values (note that error bars are smaller than marker size). Simple random, numeric random, and
fractional random are the results from randomized versions of the data, and represent the baseline maximum log-likelihood.
Similar to Figure S21, fractional contagion is the best model. (B) Relationship between simulated cascade size and local weighted
clustering coefficient, for all three contagion models, using Gaussian distributions. Solid and dotted lines are regression fits to
the simulated data, while shaded regions are 95% confidence intervals.
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Movie S1. See attached movie. Here we show the dynamic visual connections between one selected focal individual and its
neighbors in a group of freely swimming fish. The red dot is placed over the head of the focal fish, while the red outline is
drawn around the focal fish’s body. Blue dots are placed over the head of every fish that has a direct line of sight to the focal
individual. Light blue triangles show the angular area occupied by the focal individual on the eye of each observer.

38 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author



i
i

“PNAS˙SI˙RD16” — 2015/3/3 — 13:44 — page 39 — #39 i
i

i
i

i
i

Movie S2. See attached movie. The dynamic complex network is shown for five selected cascade events, at half speed,
15 frames per second. Lines are drawn between every fish pair that has visual contact, with more transparency for weaker
connections. Strong connections are plotted in brighter colors, with red being the strongest.
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